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Abstract: Quadrotor unmanned aerial vehicles (UAVs) often encounter intricate environmental and
dynamic limitations in real-world applications, underscoring the significance of proficient trajectory
planning for ensuring both safety and efficiency during flights. To tackle this challenge, we introduce
an innovative approach that harmonizes sophisticated environmental insights with the dynamic
state of a UAV within a potential field framework. Our proposition entails a quadrotor trajectory
planner grounded in a kinodynamic gene regulation network potential field. The pivotal contribution
of this study lies in the amalgamation of environmental perceptions and kinodynamic constraints
within a newly devised gene regulation network (GRN) potential field. By enhancing the gene
regulation network model, the potential field becomes adaptable to the UAV’s dynamic conditions
and its surroundings, thereby extending the GRN into a kinodynamic GRN (K-GRN). The trajectory
planner excels at charting courses that guide the quadrotor UAV through intricate environments
while taking dynamic constraints into account. The amalgamation of environmental insights and
kinodynamic constraints within the potential field framework bolsters the adaptability and stability
of the generated trajectories. Empirical results substantiate the efficacy of our proposed methodology.

Keywords: trajectory planning; kinodynamic constraints; environmental perception; potential field;
gene regulation network

1. Introduction

The successful implementation of autonomous drone navigation has immense value
in scientific studies and various industries as it liberates their applications from limitations
and paves the way for diverse deployments. Despite this progress, the pursuit of safe and
efficient navigation in unknown environments poses significant challenges. To achieve
secure and efficient navigation, it is of paramount importance for drones to accurately
represent and effectively utilize environmental information during trajectory planning.

A widely adopted technique for representing the distance between a quadrotor and
objects in its environment is the Euclidean signed distance field (ESDF), which utilizes gra-
dients. The ESDF has proven to be effective in motion planning for single-agent scenarios,
providing valuable insights for autonomous navigation.

Nevertheless, it has limitations in certain application scenarios. For instance, its
ability to represent all objects in an environment as obstacles may not adequately capture
the complexity of cooperative swarm motions or environments with multiple layers of
semantic information. This limitation impedes the successful completion of flight tasks in
complex scenarios.

To address these challenges, this study proposed a novel gradient potential field,
termed the kino-gene regulatory network (K-GRN) potential field, which is based on
a GRN model. By considering the kinematic state of a quadrotor, the objective was to
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enhance trajectory planning and improve the overall navigation performance. Additionally,
we introduced the K-GRN planner, which is a local trajectory planning framework that
leverages the kinodynamic GRN potential field to generate optimized flight paths.

Inspired by the intricate interactions observed in organisms, a GRN model was used to
generate a gradient potential field. This approach has found extensive application in swarm
robot morphology generation and serves as a foundation for the development of autonomous
systems. Based on the previous work by Li [1], who utilized the GRN potential field for shape
generation and cooperative motion of a swarm of drones without communication, this study
further enhanced the potential field by incorporating the kinematic state of the robots. This
enhancement enabled the design of a local trajectory planning framework using the proposed
potential field, thereby ensuring improved navigation capabilities.

The contributions of this study are as follows. First, we propose an improved GRN
potential field that demonstrates its applicability in achieving safe and efficient trajectory
planning for drones. Second, we introduce the incorporation of the kinematic characteristics
of agents, enabling the extension of the potential field from a spatial domain to a state
space, thus, enriching navigation capabilities. Finally, based on these contributions, we
establish constraint rules for the trajectory search and develop a comprehensive framework
for local planning that further enhances the overall navigation system.

The remainder of this paper is organized as follows. In Section 2, we present a
comprehensive review of the related work, encompassing GRN, trajectory planning for
unmanned aerial vehicles (UAVs) in positional environments, and the application of bio-
inspired algorithms in UAV navigation. Section 3 outlines the enhancements made to the
GRN potential field and presents the framework of the proposed method. We present a
real-time planning algorithm based on the K-GRN potential field in Section 4. In Section 5,
we describe the experimental setup and results for validating the effectiveness of our
proposed approach. Finally, in Section 6, we present the conclusions by summarizing
the key findings and contributions and provide insights into potential avenues for future
research and development.

2. Related Work
2.1. GRN Model in UAV Control

In recent years, GRNs have attracted considerable attention in the design of control
methods for robot control [2,3]. Taylor et al. [4] introduced a GRN–cell adhesion model
(CAM) control method that combines a CAM with a GRN model. This approach enables
the spatial and temporal differentiation of protein expression across swarm robots, which
are treated as artificial cells with virtual membranes and artificial cell adhesion molecules.
Guo et al. [5,6] applied a GRN model to generate adaptive patterns for swarm robots. Each
robot possessed two genes that produced proteins to control its movements in the x and
y directions via GRN mechanisms. These proteins enabled the robots to move within the
boundaries of predefined shapes.

Furthermore, evolutionary algorithms are utilized to optimize robot motion parame-
ters. However, this method relies on global coordinates, which are often challenging for
robots to obtain in real-world applications. To address this issue, Guo et al. [7] proposed
a GRN-based method for selecting a reference robot and establishing a local coordinate
system. Each robot contributed to the formation of an uneven B-spline pattern using a
local coordinate system. Building on this local coordinate system, Jin et al. [8] introduced a
hierarchical gene regulatory network (H-GRN) for adaptive pattern generation, specifically
for trapping targets in dynamic environments. Oh et al. [9] expanded an H-GRN model
to achieve area coverage. To address the challenges related to merging and separating
patterns during multi-target entrapment and obstacle avoidance, Oh et al. [10] proposed an
enhanced H-GRN (EH-GRN) structure that incorporates obstacles and targets as inputs and
evolves the GRN to generate a morphogen gradient space. Similarly, Meng and Guo [11]
introduced an evolving GRN method to adjust the structure and parameters of the GRN.
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Recently, Wu et al. [12] proposed a collaborative GRN (C-GRN) model that enables
peer collaboration between agents. This model enables agents to discover and reinforce
weak areas in the formed patterns. Yuan et al. [13] combined a tracking-based H-GRN with
a leader–follower model and introduced a TH-GRN model that is suitable for dynamic and
complex environments. Fan et al. [14] used a genetic programming approach to design a
design automation framework for the gene regulatory network.

In summary, the utilization of a GRN is widespread for generating gradient fields
that depict environmental information and direct robot movement. However, the current
studies either rely solely on gradient information to guide robot behavior or address a GRN
method as a distinct upper-level structure, separate from a lower-level planning controller.

The proposed GRN structure is based on VG-Swarm [1] improvement, which expands
the dimensions of the GRN potential field and incorporates the state space of drones. We
designed a real-time trajectory-planning method specifically tailored to this framework.

2.2. Bio-Inspired Path Planning

Bio-inspired algorithms have recently attracted substantial attention owing to their
efficacy in solving complex optimization problems while maintaining balance among their
components. In the domain of path planning problems, studies have increasingly focused
on harnessing the power of bio-inspired algorithms to optimize these problems [15–18].

Swarm intelligence is derived from the self-organizational behavior observed in bio-
logical systems inspired by this swarm intelligence, we have developed a number of swarm
intelligence algorithms, among which the most notable are particle swarm optimization
(PSO) and ant colony optimization (ACO). For example, Phung et al. [19] proposed an
enhanced discrete PSO algorithm tailored to UAV inspection path planning. They replaced
the inspection path-planning problem with a solution derived from the extended traveling
salesman problem. ACO, originally introduced by Dorigo et al. in 1999 [20], enables
ants to cooperatively discover the shortest path between a nest and its food sources using
pheromone guidance. Nonetheless, both the ACO and PSO algorithms encounter chal-
lenges related to slow convergence speeds when the computational complexity rapidly
increases, which is undesirable for real-time planning in complex environments.

Another noteworthy bio-inspired algorithm is the evolutionary algorithm. Sun et al.
employed an adaptive multi-objective differential evolution (DE) algorithm in a multi-robot
system [21]. Patlea et al. presented an improved genetic algorithm (GA) that employed a
binary code matrix for mobile robot navigation in complex environments [22]. However,
similar to the ACO and PSO algorithms, the time complexity of evolutionary algorithms is
typically high, posing obstacles to achieving real-time performance in complex environments.

One limitation of the bio-inspired algorithms is their lack of effectiveness in real-time
path-planning problems. This is because of the requirement for the learning processes, such
as the modification of path selection probabilities using an objective function, as observed
in ant colony optimization. Among these bio-inspired methods, a GRN model offers a
superior option because of its capability to generate gradient fields in real-time. For the
first time, we introduced a real-time trajectory planning framework using a potential field
generated from a GRN model.

2.3. UAVs Navigation with Gradient Field

Gradient-based motion planning is the dominant approach for generating local trajecto-
ries in UAVs, formulating the motion planning as an unconstrained nonlinear optimization
problem. The introduction of the Euclidean signed distance field (ESDF) in robotic mo-
tion planning by Ratliff et al. [23] has enabled planning frameworks to directly optimize
trajectories in a configuration space using its abundant gradient information. However,
discrete-time trajectory optimization [23,24] is unsuitable for drones because of its sensi-
tivity to dynamic constraints. To address this limitation, a continuous-time polynomial
trajectory optimization method for UAV planning was proposed by [25]. Despite its merits,
the method carries a significant computational burden due to the integration of the potential



Sensors 2023, 23, 7982 4 of 14

function, and even with random restarts, the success rate of this method approximates only
70%. To address these challenges, Ratliff et al. [23] introduced a B-spline parameterization
of trajectories leveraging convex hull properties. In [26], the success rate was significantly
improved by finding a collision-free initial path as the front end, and further improvements
were made by considering the kinodynamic constraints [27]. Zhou et al. [28] enhanced sys-
tem robustness by incorporating perception awareness. Among these approaches, the ESDF
is crucial in evaluating the distance to nearby obstacles based on the gradient magnitude
and direction.

Oleynikova [29] and Han [30] proposed incremental methods for ESDF generation,
namely, Voxblox and FIESTA, respectively. Although these methods are highly efficient for
dynamic updating, they only provide information on obstacles and neglect other important
environmental information in the generated ESDF. Therefore, there is a substantial need
to design a gradient field for real-time trajectory planning that can effectively represent
environmental information as comprehensively as possible.

3. Kinodynamic GRN Potential Field

Our method improves upon the framework of a GRN model in a VG-Swarm [1], as
shown in Figure 1. Within this enhanced framework, the method for computing the GRN
concentration in each cell is calculated through Equations (1)–(6).

dTi
dt

= ∇2Ti + γi − Ti (1)

dOj

dt
= ∇2Oj + β j −Oj (2)

dNm

dt
= ∇2Nm + ηm − Nm (3)


N = ∑nn

m=1 Nm

T = ∑nt
i=1 Ti

O = ∑no
j=1 Oj

(4)

dM
dt

= −M + sig
(

1− T2, θ, k
)
+ sig

(
O2, θ, k

)
+ sig

(
N2, θ, k

) (5)

sig(x, θ, k) =
1

1 + e−k(x−θ)
(6)

γi, β j, and ηm are positive numbers representing the position of the target, obstacles,
and neighboring UAVs, respectively. Ti represents the protein concentration formed by the
ith target in the environment (γi stands for the position information of the ith target), Oj

represents the protein concentration formed by the jth obstacle (β j stands for the position
information of the jth obstacle), and Nm represents the protein concentration formed by
the mth neighboring UAV (ηm stands for the position information of the mth neighboring
UAV). T, O, and N are the combined concentrations produced by all the targets, obstacles,
and neighbors, respectively. ∇ is the Laplace operator, which is defined as the second
derivative of Ti, Oj, and Nm. The concentration field obtained by calculating M is used to
generate entrapping patterns.
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Figure 1. Schematic of the structure of the vision-based GRN. Each cell represents an individual UAV
and is composed of an upper and lower layer. In the upper layer, sensory proteins p1, p2, and p3

receive information about the positions of targets, obstacles, and neighboring robots, respectively,
forming corresponding concentration fields. Protein M1 integrates the concentration field from p1

and p2, while protein M2 integrates the concentration field from M1 and p3. These proteins influence
the production of actuating proteins G1 and G2 in the lower layer, which, respectively, represent
entrapping patterns and the moving direction of the UAV. G1 and G2 also affect the production of
protein P, which ultimately determines the dynamic position of the UAV. Moreover, protein P in one
cell influences the gene expression of the neighboring cells in the system.

Equations (1) and (2) can be revised to Equations (7) and (8), respectively, which are
crucial operations in the GRN model for generating a gradient field.

Ti = e−tdtar,i (7)

Oj = e−tdobs,j (8)

where dtar,i represents the Euclidean distance between the agent and the ith target, and
dobs,j represents the distance between the agent and the jth obstacle. Notably, the VG-
Swarm considers only the distance between the objects and agents during the guidance
control process. To address this limitation, we propose a specialized GRN method for
trajectory planning called kinodynamic GRN. Unlike the VG-Swarm, the kinodynamic
GRN introduces the concept of the state transition cost. We assume that any point within
the grid can serve as an intermediate node for UAV movement. By sampling the states of
these intermediate nodes, denoted by Xk+1 (p, v), we can calculate the state transition costs
to the obstacle and target nodes, denoted by LXk+1,Xobs and LXk+1,Xtar , respectively. These
costs can be expressed using Equations (9) and (10).

Lxk+1,xtar =
∫ τk+1,tar

0

∥∥uk+1, tar
∥∥dt + ρτk+1, tar (9)

Lxk+1,xobs =
∫ τk+1,obs

0

∥∥uk+1,obs
∥∥dt + ρτk+1,obs (10)
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where uk+1,tar and τk+1,tar, respectively, represent the optimal input and optimal time
required to transition from the state Xk+1 to the target state. They are determined using the
Pontryagin minimum principle, as expressed in Equation (11).

p∗µ(t) = 1
6 αµt3 + 1

2 βµt2 + vµc + pµc[
αµ

βµ

]
= 1

T3

[
−12 6T
6T −2T2

][
pµg − pµc − vµcT

vµg − vµc

]
J ∗(T) = ∑µ∈{x,y,z}

(
1
3 α2

µT3 + αµβµT2 + β2
µT
) (11)

Next, the Euclidean distance in Equations (7) and (8) is replaced by the state transition
cost, as expressed by Equations (9) and (10), thereby forming the protein concentration
expressions (Equations (12) and (13)) for environmental information in the kinodynamic
GRN potential field.

Ti = e−tLxk+1 ,xtar (12)

Oj = e−tLxk+1,xobs (13)

In the path-planning process, we also consider the current state of the agent to ensure
that the planned path is executable. Hence, the current kinematic state of an individual
drone, denoted as Xk, is considered. We define the forward cost, LXk ,Xk+1 , using Equation
(14), which represents the cost of transitioning from state Xk to Xk+1.

Lxk ,xk+1 =
∫ τk,k+1

0

∥∥uk,k+1
∥∥dt + ρτk,k+1 (14)

Finally, the generation of the potential field is expressed using Equations (15)–(19),
where Mk+1 denotes the protein concentration in the sampled state Xk+1.{

T = ∑nt
i=1 Ti,

O = ∑no
j=1 Oj

(15)

J0 = e−tLxk ,xk+1 (16)

Mk+1 = sig
(

1− T2, θ, k
)
+ sig

(
O2, θ, k

)
+ sig

(
1− J2

0 , θ, k
)

(17)

sig(x, θ, k) =
1

1 + e−k(x−θ)
(18)

As illustrated in Algorithm 1, during the construction of the K-GRN potential field,
the grid map needs to be initialized first. Following that, the grids within M are iterated
over, during which the state sampling occurs to acquire candidate states. Subsequently,
these candidate states within each grid are revisited to compute their associated costs
and integrate them into the GRN model. This process ultimately yields concentration
information for the specific candidate states at that particular position.

In this context, M constitutes an assortment of state samples within specific ranges
across each grid of the map, indicating the concentration of K-GRN at that position under
that particular state. E encompasses environmental data, which include obstacles, objec-
tives, and optionally, neighboring drones. X represents the state of the UAV, wherein Xk
signifies the present state, Xk+1 denotes the sampled candidate state, and Xobs and Xtar,
respectively, refer to the states when the drone encounters an obstacle and when it reaches
the target destination. L embodies the cost associated with state transitions, wherein the
subscripts of L align with the originating state and the terminal state.
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Algorithm 1 Generation of K-GRN Field

Notation: Concentration M, Environment E cost L State Xe;
Initialize: M← lnitMap(M, X)

1: for Mi in M: do
2: for Xi in Xk+1: do
3: (LXk+1,Xtar )← EvaluateCostToTarget (Xj, E)
4: (LXk+1,Xobs)← EvaluateCostToObstacle (Xj, E)
5: (LXk ,Xk+1)← EvaluateCostTolnstance (Xj, E)
6: if ¬ isCollsionFree() then
7: M(i, j)← CulculateKGRNConcentration (LXk+1,Xtar , LXk+1,Xobs , LXk ,Xk+1 )
8: else
9: SetlnfConcentration (M(i, j))

10: end if
11: end for
12: end for
13: return M

In summary, the K-GRN potential field is a specialized set of potentials crafted for the
purpose of trajectory planning. In comparison to the alternative approaches, the potential
field molded by K-GRN can embrace a wider array of environmental data, incorporating
elements such as obstacles, target points, and neighboring information. It formulates dis-
tinct potential fields surrounding these elements to effectively steer the trajectory planning
procedure. Furthermore, K-GRN factors in more intricate state information across multiple
dimensions, encompassing both the UAV’s current state and the projected future states.
This holistic approach ensures the traceability of trajectories and significantly elevates the
safety standards for the drone.

4. Trajectory Planner Based on K-GRN Potential Field

As mentioned in Section 3, the concentration gradient field of the K-GRN incorporates
both environmental information and kinematic considerations to facilitate trajectory plan-
ning. However, maintaining a continuous gradient field throughout the planning process
can be computationally demanding and impractical, especially for real-time planning in
dynamic environments. To address this challenge and improve planner efficiency, we
propose a sampling-based approach. Instead of computing the concentration values for all
the grid cells, we selectively sample the grid points of interest within the drone’s feasible
input range. These sampled points represent potential locations that can be navigated by
the drone. By focusing on these points, we can significantly reduce the computational
burden and calculate the concentration information efficiently. This approach enables us to
strike a balance between computational efficiency and the accurate representation of the
environmental information necessary for effective trajectory planning.

A flowchart of the trajectory planner is shown in Figure 2. Initially, a grid map
is created in which each grid cell is affected by the protein concentration produced by
objects in the environment, including the targets and obstacles. The current input uτ and
its corresponding time τ for the drone are sampled. The cost of the drone executing a
trajectory segment is computed using the sampled final state. The path with the lowest cost
is selected, and the search process is continued until the vicinity of the target is reached.
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Depth Perception 
(Mapping)

K-GRN Field 
Generating

Path Sampling & 
Searching

B-spine 
Optimization

Path Executing

Figure 2. Flow diagram of the trajectory planner.

5. Experiments

The simulation experiments were conducted using UE4 to evaluate the performance
of the proposed approach, which can incorporate a wide range of realistic physical models
and introduce the various challenges to drone flight. We designed six different scenes,
each with two levels of obstacle density, as shown in Figure 3. In each experiment, the
obstacles were randomly generated to ensure a diverse and dynamic environment. The
navigation task was repeated 100 times for each scene to obtain statistically significant
results. In each trial, a random target point within a distance range of 15–20 m was set for
the drone. The success or failure of the task was determined based on whether the drone
successfully reached the target without colliding with obstacles or experiencing a crash.
Through these experiments, we assessed the robustness and effectiveness of the proposed
trajectory planner in various challenging scenarios.

(a) (b)

Figure 3. Illustrations of the two different scenes with varying obstacle densities. (a) Dense jungle
scene. (b) Sparse jungle scene.

To evaluate the effect of different gradient fields on trajectory generation, we conducted
experiments to compare various approaches. Specifically, our proposed method was
compared against two other approaches: one that utilizes the ESDF-based method, which
derives its potential field formation from [30], and another that does not incorporate a
potential field at all, as described in [31]. The experimental results are presented in Table 1.
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In the table, EF refers to the planning method using ESDF, while NF refers to the planning
method that does not use potential fields. "Success" is defined as the drone’s capability to
traverse from the starting point to the endpoint (within a proximity of roughly 0.3 m) in a
jungle setting without colliding with obstacles.

Notably, the proposed method, which integrated both environmental and state infor-
mation, required a slightly longer computation time than the compared methods. However,
the paths generated by the proposed approach strike a balance between safety and efficiency.
We observed significant improvements in both the success rate of the trajectory execution
and the average flight speed of the drone compared with the benchmark methods. These
findings demonstrate the effectiveness of the proposed approach in generating trajectories
that consider both safety and efficiency. Despite the slightly longer computation time, the
benefits gained in terms of the improved success rate and flight speed render the proposed
method a favorable choice for trajectory planning in dynamic environments.

Table 1. Effect of Different Gradient Fields on Trajectory Generation.

Policy Success Rate Max Velocity
(m/s)

Average
Velocity (m/s) Slove Time (ms)

EF 0.69 4.13 2.65 6.55
NF 0.64 3.81 2.47 1.49

GRN 0.72 3.93 2.71 6.88
The numbers in bold represent the optimal data for this column.

We have also conducted experiments to showcase the efficacy of integrating the dy-
namics information of drones and their candidate points into the potential field. This
underscores the essentiality of evolving from GRN to K-GRN, as presented in Table 2. In
the table, KF refers to the planning method that integrates kinematic information into the
potential field, while NKF refers to other potential field planning methods that do not
include dynamic information. NF is a planning method that does not use potential fields.
In the identical scenario and utilizing the same experimental approach, we conducted
a comparative analysis of the proposed approach, which involves the K-GRN potential
field, against the performance of the GRN potential field without the integration of motion
dynamics. Additionally, we contrasted these with navigation task planning methods that
do not rely on potential fields. The experimental results underscore a distinct advantage in
navigation success rates for the trajectory planning method guided by K-GRN. As previ-
ously discussed in this paper, one of the key advantages of K-GRN over other approaches
lies in its ability to ensure trajectory traceability, thus bolstering drone safety. Concerning
the time of generating potential field t f ield, our method shows a minor drawback in terms
of the duration needed for potential field formation. However, when evaluating the overall
planning time, which encompasses both t f ield and tplan, we still maintain a significant edge
over alternative planning methods. Despite the slightly longer computational time required
for potential field generation, the proposed method demonstrated superior performance
in terms of the navigation task success rate and planning time compared with the other
two methods. This highlights the effectiveness of the proposed approach in dynamic
environments and its potential as an ideal choice for trajectory planning.

Table 2. Performance Comparison of Different Planning Methods After Incorporating UAV Kinemat-
ics Information into GRN Potential Field.

Policy Success Rate t f ield (ms) tplan (ms)

KF 0.72 5.22 0.91
NKF 0.69 4.88 4.47
NF 0.55 0 2.90

The numbers in bold represent the optimal data for this column.
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To evaluate the effectiveness of our trajectory planning framework, we compared it
with two state-of-the-art methods: the Ego-planner [31] and the Fast-planner [28]. The
Fast-Planner utilizes the ESDF for path search and incorporates the kinematic information
in the search process, whereas the Ego-planner proposes a real-time planning method that
does not rely on the ESDF. We conducted a series of experiments on six scenes with two
obstacle-density levels. Both benchmark methods were open-source, and we used their
default parameters for the experiments.

Table 3 presents a comparison between K-GRN and two state-of-the-art (SOTA) meth-
ods across two distinct scenarios. In this context, employing the same experimental method-
ology, we conducted separate comparisons of the drone’s navigation success rates, average
flight speeds, and planned trajectory lengths under each condition.

Table 3. Comparison of UAV Navigation Performance in Scenes with Different Obstacle Densities.

Dense Scene Sparse Scene

Policy Success
Rate

Average
Velocity

(m/s)

Trajectory
Length (m)

Success
Rate

Average
Velocity

(m/s)

Trajectory
Length (m)

GRN-
planner 0.56 2.01 71.29 0.72 2.71 58.13

Fast-planner 0.47 1.95 65.76 0.69 2.65 55.43
Ego-planner 0.53 1.88 67.18 0.64 2.47 49.90

The numbers in bold represent the optimal data for this column.

Across all scenes, our proposed method significantly outperformed the two bench-
mark methods in terms of both success rates and average speeds. This demonstrates the
effectiveness of the proposed approach in achieving successful navigation while main-
taining rapid flight speed. However, our paths tended to be slightly longer than those
generated by the other methods, due to our emphasis on flight safety. This trade-off ensures
a higher level of safety during the flight.

Furthermore, Figure 4 displays the real-time speed variations among the three algo-
rithms in dense scenes. It is worth highlighting that the presented algorithm showcases
notably seamless speed transitions across the entire navigation journey. The pronounced
speed reduction captured in the graph aligns with the drone executing obstacle avoidance
maneuvers. While navigating through an identical course, our approach strategically
adopts a safer path-planning strategy, prioritizing the avoidance of densely wooded narrow
passages. Consequently, despite generating a lengthier route, this is a paramount benefit of
our method.
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Figure 4. Real-time Velocity Variation of UAV during the Experiment: (a) Velocity Curve of GRN-
planner. (b) Velocity Curve of Fast-planner. (c) Velocity Curve of Ego-planner.

To evaluate the practical efficacy of the K-GRN planner, we conducted relevant simu-
lation experiments. The simulation environment was designed to replicate a real jungle
scenario. In this scenario, we had the drone shuttles through the jungle. As shown in
Figure 5, the UAV’s obstacle avoidance process, guided by the K-GRN planner, is depicted.
It is clear that the drone could detect obstacles in advance, perform evasive maneuvers,
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and navigate successfully while maintaining a safe distance from the obstacles. Figure 6
displays the trajectory of the drone as it shuttles through the jungle environment.

(a) (b) (c)

Figure 5. (a–c): Obstacle avoidance trajectories of a drone guided by the K-GRN planner in a
jungle scenario.

 

Figure 6. Trajectories of the drone as it shuttles through the jungle environment.

In summary, our proposed method outperformed the benchmark methods in terms of
success rate and average speed across various obstacle-density scenarios. The experimental
results validated the superiority of the proposed approach, highlighting its potential to
advance the field of UAV trajectory planning.

6. Conclusions

In this study, we have introduced an improved GRN potential field, termed the K-GRN
potential field, specifically designed for trajectory planning. This potential field incorporates
the costs of state transitions for intelligent agents to assist planners in generating smooth
and efficient trajectories. Additionally, we have designed a planner that searches for the
optimal trajectory using input sampling, requiring only a search for the path with the lowest
cost within the established potential field. Through benchmark comparisons, we have
validated the advantages of incorporating the state space in the GRN potential fields, the
effectiveness of the K-GRN potential field in trajectory planning, and the performance of the
K-GRN-guided planner compared with state-of-the-art methods. The results demonstrated
that the proposed method offered superior paths in terms of both safety and effectiveness
for drone flight.

Our approach also displays specific limitations: Driven by safety considerations, we
embraced a cautious planning strategy, which results in a difficulty in devising optimal
paths within complex scenarios. Similarly, due to this rationale, despite attaining advan-
tages in average speed, our method encountered difficulties in outperforming the SOTA
approach with regards to the highest planned speed. In forthcoming endeavors, we aim
to enhance the K-GRN methodology by integrating adaptive planning strategies, thereby
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enabling it to demonstrate diverse obstacle avoidance performances across a spectrum of
scenario complexities. Furthermore, we aim to extend the application of the K-GRN poten-
tial fields to drone swarm missions and explore their application in achieving cooperative
flight in environments without communication capabilities.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicles
GRN Gene regulation network
K-GRN Kinodynamic GRN
ESDF Euclidean signed distance field
CAM Cell adhesion model
GRN-CAM Gene regulation network-cell adhesion model
H-GRN Hierarchical GRN
EH-GRN Enhanced H-GRN
C-GRN Collaborative GRN
TH-GRN Tracking-based H-GRN
VG-Swarm A vision-based gene regulation network For UAVs swarm behavior emergence
PSO Particle swarm optimization
ACO Ant colony optimization
DE Differential evolution
GA Genetical algorithm
UE4 Unreal engine 4
KF Kinodynamic GRN field
NKF GRN Field Without Kinodynamic
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